Replacing High-Bleed Pneumatic Devices

Lessons Learned from Natural Gas STAR Partners

NiSource and

EPA's Natural Gas STAR Program
June 3, 2003

Pneumatic Devices

- Pneumatic devices are found in every gas production, processing, transmission and distribution facility
- Most pneumatic devices leak gas by design
- Losses from pneumatic devices are the largest source of methane emissions
- □ Replacing, retrofitting, or maintaining high-bleed devices saves gas and money
- □ These methods can be highly cost-effective

Location of Pneumatic Devices at Compression Stations

SOV = Shut-off Valve (Unit Isolation)

LC = Level Control (Knockout, Contactor, TEG

Regenerator)

TC = Temperature Control (Regenerator Fuel Gas)

FC = Flow Control (TEG Circulation, Compressor

Bypass)

PC = Pressure Control (FTS Pressure, Compressor

Suction/Discharge)

Pneumatic Device Schematic

Sources of Methane Losses

- □ As part of normal operations, pneumatic devices release natural gas into the atmosphere
- □ High-bleed devices bleed in excess of 6 scf per hour
 - ◆ Equates to >50 Mcf per year
 - ◆ Typical high-bleed pneumatic devices bleed an average of 140 Mcf per year
- The actual bleed rate is largely dependent on the device's design

Magnitude of Methane Losses

- Major source of methane losses from the natural gas industry
- □ Pneumatic devices are used throughout the natural gas industry
 - ◆ Between 90,000 to 130,000 in the transmission sector
 - ◆ Over 250,000 in the production sector
 - In the distribution sector most pneumatic devices are non-bleeding pressure regulators

Losses from Pneumatic Devices

	Gas Industry	Oil Industry	
Production	31 Bcf	22 Bcf	
Processing	16		
Transmission	14		
Total	61 Bcf	22 Bcf	

Total Gas/Oil 83 Bcf/yr

Three Options for Reducing Losses

- □ Option 1: Replace high-bleed devices with low-bleed devices
- □ Option 2: Retrofit controller with bleed reduction kits
- Option 3: Maintenance aimed at reducing losses

Option 1: Replace High-Bleed Devices

- Most applicable to:
 - ◆ Controllers: liquid-level and pressure
 - Positioners and Transducers
- Suggested Action: Evaluate replacements
 - ◆ Replace at end of device's useful life
 - ◆ Early replacement

Option 1: Replace High-Bleed (cont'd)

□ Costs vary with size

- Typical costs range from \$700 to \$3,000 per device
- Incremental costs of low-bleed devices are modest (\$150 to \$250)
- Gas savings often pay for replacement costs in short periods of time

Option 2: Retrofit with Bleed Reduction Kits

- Most applicable to:
 - ♦ High-bleed controllers
- Suggested Action: Evaluate retrofits
 - ◆ As alternative to early replacement
 - ◆ Retrofit kit costs approximately \$250-\$500

Option 3: Maintenance to Reduce Losses

- Applies to all pneumatic devices
- Suggested Action: Modify routine maintenance procedures
 - Field survey of installed controllers
 - Where process allows, tune controllers to minimize bleed

Option 3: Maintenance (cont'd)

- Suggested Action (cont'd)
 - Re-evaluate the need for pneumatic positioners
 - ◆ Repair/replace airset regulators
 - Reduce regulated gas supply pressure to minimum
 - Routine maintenance should include repairing/replacing leaking components
- □ Cost is low

Summary of Decision Process

Economics of Replacement

	Replace	Early Replacements	
Implementation ^a	at End of Life	Level Control	Pressure Control
Cost (\$)	150 – 250 ^b	380	1,340
Annual Gas Savings (Mcf)	50 – 200	166	228
Annual Value of Saved Gas (\$) ^c	150 – 600	498	684
Payback (months)	5 – 12	9	23
IRR (%)	97 – 239	129	42

^a All data based on Partners' experiences. See Lessons Learned for more information.

^c Gas price is assumed to be \$3/Mcf.

^b Range of incremental costs

Economics of Retrofit

	Retrofit ^a
Implementation cost b	\$250-500
Bleed rate reduction (Mcf/device/year)	219
Value of gas saved (\$/year) c	657
Payback (months)	9
IRR	129%

^a On high-bleed controllers

^c Gas price is assumed to be \$3/Mcf

^b All data based on Partners' experiences. See *Lessons Learned* for more information

Economics of Maintenance

	Reduce supply pressure	Repair & retune	Change settings	Remove valve positioners
Implementation Cost (\$) ^a	153	23	0	0
Gas savings (Mcf/yr)	175	44	88	158
Value of gas saved (\$/yr) b	525	132	264	474
Payback (months)	3.5	2	<1	<1
IRR	343%	574%		

^a All data based on Partners' experiences. See *Lessons Learned* for more information

^b Gas price is assumed to be \$3/Mcf

Recommendations

- Evaluate all pneumatics to identify candidates for replacement and retrofit
- □ Choose lower bleed models at change-out where feasible
- □ Identify candidates for early replacement and retrofits by doing economic analysis
- Improve maintenance
- Develop an implementation plan

Discussion Questions

- □ To what extent are you implementing this technology?
- □ How can this technology be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, regulatory, etc.) that are preventing you from implementing this technology?

